I、神秘消失的肿瘤
在肿瘤科待的时间久了,总有机会遇见奇迹。大概十年以前,Archie Tse还在纪念斯隆-凯特琳癌症中心工作。那时候他接管了一位晚期胰 腺癌患者,多数胰 腺癌患者的预后并不好,她也一样,病情越来越糟糕,大概只剩几个月的生命了吧。
她的腹腔已经开始渗入大量的液体,医生只能通过插入导管引流。但由于出现了感染,腹腔内的导管只能被取出,她也被送回家休养,让她能够在家中度过人生的最后时光。
然而在几个月之后,Tse在医院再次遇见了这位患者。Tse觉得很诧异,因为他并没有预料到她仍然活着。尽管在这几个月内这位患者没有接受任何治疗,但是她腹部的积液却奇迹般地消失了。Tse让这位患者做了CT检查,结果很明确,她的肿瘤已经消失了。
虽然很多肿瘤科医生没有机会亲眼见到过这样的病人,但多数医生却听过类似病人的故事。医生们把这种现象称为自发缓解 (spontaneous remission),极少数的癌症病人即使在不接受任何治疗的情况下,病情也能够自行缓解。
长久以来,科研人员一直对这种现象感到非常的好奇,到底是什么原因使病人的肿瘤消失了呢?是上帝的眷顾,还是信念的力量?
或许比较合理的解释是,这些病人的免疫系统被激活了,使他们自身的免疫系统能够有效地对抗肿瘤,完全清除这些肿瘤细胞。但肿瘤自发缓解的概率极低,曾有研究人员推测该现象发生的概率大约为十万分之一 [1],因此即使存在肿瘤自发缓解的可能性,绝大多数病人也无法因此获益。
所以更重要的问题是,肿瘤的自发缓解能够为我们带来什么样的启示?实际上早在100多年以前,同样是在纪念斯隆-凯特琳癌症中心工作的外科医生William Coley就研究过这样的案例 (见:肿瘤免疫疗法的诞生)。
William Coley曾在他导师留下的病历中读到过Stein的治疗经历,Stein的左耳下方长了一个很大的肿瘤,但肿瘤在伤口感染之后却逐渐消失了。这也激发了Coley的灵感,于是Coley开始通过向肿瘤患者体内注射灭活的细菌来对他们进行治疗,希望能够重现这样的奇迹,使病人的肿瘤能够缩小,甚至消失。
在多数情况下,Coley使用的毒素的确能够激活免疫系统,使那些活化的免疫细胞能够识别并攻击肿瘤细胞。虽然他曾经治愈过很多的肿瘤患者,但这一疗法并不总是有效,而且也存在诸多的限制性因素,因此该疗法最终没能成为癌症治疗的主流方法。
此后的几十年内,由于人们对于肿瘤免疫领域认识的局限性,该领域一直没有比较大的进展。上世纪六七十年代,又出现了一些诸如卡介苗的治疗方法,通过瘤内注射或者系统给药等方式非特异性地强化免疫系统功能。而到了八十年代,能够活化T细胞以及NK细胞的干扰素和IL-2也被尝试应用于癌症的治疗(从魏则西到Emily Whitehead这篇文章链接)。
但这些方法依然有非常多的局限性,而且很多疗法的毒副作用非常强。然而科学家依然没有放弃,依然希望能够重现Coley的奇迹。就在最近几年,越来越多的学者以及制药公司将目光转移到了一种新的疗法上。而这种疗法的药物作用靶标,是一种叫做STING的蛋白。
STING的名称来源于Stimulator of Interferon genes(干扰素刺激基因),这种蛋白在人体出现感染期间能够被激活。STING是人固有免疫系统的组分,固有免疫系统是人体对抗诸如细菌以及病毒等外界病原体入侵的第一道防线。当STING激活之后能够增加干扰素以及细胞因子的生成,并通过一系列的级联反应,激活适应性免疫系统,活化T细胞。
实际上现代医学已经掌握了一些利用T细胞来对抗肿瘤的方法,比如默沙东和BMS的检查点抑制剂Keytruda以及Opdivo。
1999年,日本京都大学的Tasuku Honjo发现PD-1在某些情况下能够抑制免疫系统的功能,而当表达PD-1的基因被敲除之后,很多小鼠会出现自身免疫性疾病,这种自身免疫反应也是免疫系统过激的表现。通过与哈佛大学的Arlene Sharpe和Gordon Freeman合作,Honjo发现一些肿瘤细胞表面具有一种被称为PD-L1的蛋白,能够与T细胞表面的PD-1相互作用,使其免受T细胞的攻击。
作用于以上靶点的药物对于一部分肿瘤患者非常有效,但这类药物总体的有效率只有大约20–30%。所以从疗效的角度来讲,这些药物依然存在很大的提升空间。
因此制药公司也正在努力寻找能够与PD-1/L1抑制剂联合使用的疗法。而STING激动剂可能正是其中之一。PD-1/L1抑制剂能够解除T细胞的活化抑制,但是如果肿瘤内部/附近并不存在T细胞,那么该类药物也很难发挥疗效,这也是该类药物总体有效率低的部分原因。
患者需要在使用该类药物之前就存在免疫反应,这样才能使检查点抑制剂发挥作用。而固有免疫系统恰好能够完成这一任务。也就是说,STING的激活能够为T细胞的活化和增殖提供基础,之后再使用检查点抑制剂就可以使T细胞有足够的能力清除体内的肿瘤细胞。这也是为何在最近几年内,包括BMS, Merck,诺华以及其他一些制药公司都在努力寻找能够活化STING的药物的原因。
II、STING……STING
十年前Glen Barber首次发现STING的时候,他大概不会预料到STING蛋白的发现能够为肿瘤免疫治疗带来新的希望。当Barber在迈阿密大学进行免疫系统及病原体研究的时候,他发现STING蛋白缺失的细胞非常容易受到病毒的入侵 [2]。
之后UC Berkeley的Russell Vance发现来源于细菌的分子c-di-GMP(一种环状的二核苷酸,CDN)能够结合哺乳动物的STING受体,并且激活固有免疫系统 [3]。2012年Barber又发现STING能够被同一生物体内死亡细胞中泄漏的DNA活化,但是STING如何识别如此庞大的DNA分子当时仍然不清楚。
在2013年,德克萨斯大学西南医学中心的Zhijian Chen解决了这一问题:无论DNA是来自于病毒,细菌或者生物体自身,都能与一种叫做cyclic GMP-AMP synthase (cGAS) 的酶结合,cGAS能够将两个核苷酸相连,形成一种叫做cGAMP的环状二核苷酸,从而激活STING [4]。
如此,STING的活化过程便比较清晰了。人体内的DNA通常不会激活STING蛋白,因为正常情况下DNA能够存在于细胞核之内 (线粒体DNA除外)。但如果DNA泄漏到胞浆之中,则会活化STING,引发免疫反应。科学家最近发现放疗以及化疗同样能够激活STING,这可能也是由于死亡的肿瘤细胞内的DNA泄漏导致STING被激活。
而哈佛医学院的Tim Mitchison课题组以及该组的Lingyin Li却给STING领域带来了更多的惊喜。Mitchison实验室一直与诺华公司合作,共同研究一种抗肿瘤化合物DMXAA。临床前研究发现这种化合物在小鼠抗肿瘤模型中的药效极其好,但是之后的两项三期临床试验却以惨败收场。
在此之后Mitchison对DMXAA心灰意冷,负责该项目的Li也不愿再触碰这个化合物。但不久之后Mitchison 还是说服Li继续进行DMXAA这个项目。然而这一次她却有了意外的发现,Li发现DMXAA能够激活STING。但是与天然存在的STING抑制剂CDN不同,DMXAA只能结合老鼠的STING蛋白 [5]。这同时也解释了为什么诺华的临床试验没有成功,也正是这项研究掀起了STING的热潮。
发表评论 取消回复