随着人工智能技术在生命科学领域的作用越来越明显,中医药产业在人工智能的潮流中迎来新的发展良机。
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法和技术及应用系统的一门新的技术科学。
国务院发布的《新一代人工智能发展规划》明确表示,人工智能发展进入新阶段,已经成为国际竞争的新焦点,成为经济发展的新引擎,将带来社会建设的新机遇,同时发展的不确定性也将带来新挑战。
目前,人工智能技术在生命科学领域已经取得了实际应用,如智能医学影像识别、病理人工智能辅助诊断、智能健康管理、智能药物研发、智能诊疗、智能手术导航系统和健康大数据等方面。
1
中医药有着悠久的发展历史、丰富的实践经验和海量的文献,但资源挖掘利用不足,将直接影响发展和传承效率。中医与西医的发展模式大相径庭,西医从实验数据中归纳提炼经验,再通过时间检验、修正、发展成理论;而中医则是在临床试验中不断总结、摸索,经验极具个性化,总体发展缓慢且困难。
长期以来,我国中医药工作面临两“难”:一难是名老中医临床经验传承与发展;二难是提升基层中医药服务能力。名老中医学术经验的传承效率不高,传统的师带徒模式成长周期长、培养人才数量少,难以满足临床需求。此外,临床产生的大量中医药诊疗数据,尤其是中西医诊疗的综合信息资源整体利用度不高,存在数据资源浪费情况。
随着人工智能技术在生命科学领域的作用越来越明显,中医药产业在人工智能的潮流中迎来新的发展良机。
人工智能的理念和技术在中医药的传承和发展中,可分为三个阶段:一是人工智能技术挖掘中医药数据;二是人工智能技术辅助中医诊疗及辅助学习系统;三是中医药人工智能技术融入全生命周期健康维护。
第一阶段:人工智能技术挖掘中医药数据
将众多中医古籍、临床资料数字化,大力挖掘相关数据并进行分析,形成经验,辅助临床诊疗工作。
中医药数据挖掘已被广泛应用于中医药古籍的检索和名老中医经验的挖掘整理中。目前常用的方法包括频数分析、关联分析、复杂网络分析、聚类分析等。大数据技术促进了传统中医药典籍电子化,如《中华医典》等书籍和数据库,这有助于充分挖掘历代中医药知识。同时,中医药现代化研究也积累了大量中药和方剂的药理研究资料和作用机制的资料,形成了标准的数据库。
目前,中医药标准化工作已经完成对中医疾病病名、证候、中药药名、方剂名等的标准构建。但是面对中医药数据的复杂性,传统的统计分析工具和简单的数据挖掘技术已经不能满足中医药信息化发展的需求,因此需要人工智能的深度学习进一步对大数据进行分析和处理。
第二阶段:人工智能技术辅助中医诊疗及辅助学习系统
人工智能技术拥有独立自主的诊疗功能,通过大数据学习可达到与临床专家高度匹配的诊疗结果,此时人工智能技术在临床辅助诊疗中可发挥一定的主动性。同时,还可利用已达到中医临床专家水平的人工智能技术培养中医人才,提高中医药传承效率,促进中医药传承。
在中医智能诊断方面,目前四诊客观化的研究已经取得阶段性成果。脉诊和舌诊的客观量化已经有了长足进步,这或将改变传统诊断受医师主观意识、经验积累影响,以及受限于环境因素,缺乏客观指标而难以重复的问题。
第三阶段:中医药人工智能技术融入全生命周期健康维护
人工智能技术将中医全面融入生活,从健康管理、诊断、治疗等方面全方位服务患者,相应的人工智能技术能独立完成临床任务。
在数据挖掘和辅助诊疗及辅助学习相关技术均比较成熟的状态下,进一步将中医药领域的人工智能技术融入健康管理,真正应用于相关疾病的一级预防及二级预防中,充分发挥中医药治未病的理念,使中医药理念融入到日常生活中。
中医对于未病的理解更深入,不同于现代医学主要针对某一种或某几种常见疾病的健康管理,中医是通过对不同个体的望闻问切,然后根据个体的体质及相关危险因素选用针对性的干预措施,以实现整体调节,可更好实现“未病先防、既病防变、愈后防复”。
基于人工智能技术建立中医药健康管理云平台可以实现高效的人机对话并进行相关信息的处理分析,能根据每个人的不同体质状况给出相应的健康处方,对不同体质个体进行相应的调整改善,做到精准化个体化医疗保健,同时跟踪随访、收集健康大数据,开发并完善疾病预测模型和疾病筛查模型的建模策略与方法。
发表评论 取消回复